GAMEDevelopers

GAMEDevelopers

Autonomous Characters in Games Steering Behaviors

Craig W. Reynolds

Sony Computer Entertainment America

March 9, 2000

Autonomous Characters GAMEDevelopers for Games and Animation

- Self-directing characters which operate autonomously ("puppets that pull their own strings" -Ann Marion)
- Applications in:
- games and other interactive venues
- animation for television and feature films
- History:
 - first used experimentally in 1987
 - in wide commercial use today

GAMEDeveloper
Autonomous Characters
 Autonomous agents for simulated 3D worlds situated embodied
 Intersection of several fields ethology artificial life autonomous robotics dramatic characters
 Adjunct to physically-based modeling

- dynamics versus volition
- bouncing ball versus pursuing puppy

Reactive Behavior

- Behavior driven by reaction to environment
 - both passive scenery and active characters

GAMEDevelopers

- · Simplifies complex animation
 - many characters can be animated by a single behavior
- · Allows user interaction
 - improvisational style permits unscripted action

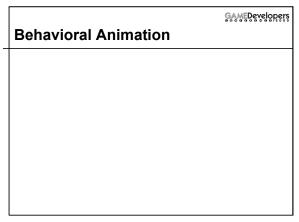
Applications of Autonomous Characters

- Behavioral animation (film and television)
 - coordinated group motion extras / background action
- Interactive multimedia (games / virtual reality)
 - opponents and allies
 - background characters
- Autonomous robotics
 - search / exploration / mapping
 - prototyping for evolutionary robotics
- Theoretical biology
 - testing theories of emergent natural behavior

GAMEDevelopers Creating Character Behaviors

- By design
 - programming
 - authoring (example: Motion Factory)
- Through self-organization
 - evolution
 - and other forms of *machine learning*:
 - neural nets
 - decision trees classifier systems
 - simulated annealing

GAMEDevelopers Ad hoc Behavioral Hierarchy


- Action selection
 - goals and strategies
- Path selection / steering
 - global motion
- Pose selection / locomotion
 - local motion (animation)

Combining Simultaneous GAMEDevelopers Behaviors

- Combination
 - discrete selection
 - behavioral blending
- · Low priority behavior should not be:
 - completely locked out
 - allowed to contradict (and perhaps cancel out) a higher priority behavior

	GAMEDevelopers	
Behavioral Blending		Beł
Summation / averaging		
 Prioritized sequential selection 		
 – first active 		
- stochastic (dithered) decision tree		

GAMEDevelopers

Behavioral Animation

- Background action
- · Autonomous characters
 - behavioral model
 - graphical model
- · Improvised action

Behavioral Animation: GAMEDEvelopers Group Motion

- Individual
 - simple local behavior
 - interaction with:
 - nearby individuals
 - local environment
- Group:
 - complex global behavior

Behavioral Animation: GAMEDEvelopers Examples of Group Motion

- People
 - crowds, mobs, passersby
- Animal
 - flocks, schools, herds
- · Vehicle
 - traffic

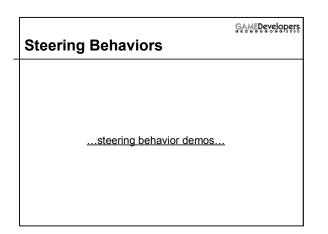
Applications of Behavioral Animations GAMEDevelopers • 1987: Stanley and Stella in: Breaking the Ice, (short) Director: Larry Malone, Producer: Symbolics, Inc. • • 1988: Behave, (short) Produced and directed by Rebecca Allen • • 1989: The Little Death, (short) Director: Matt Elson, Producer: Symbolics, Inc. • • 1992: Batman Returns, (feature) •

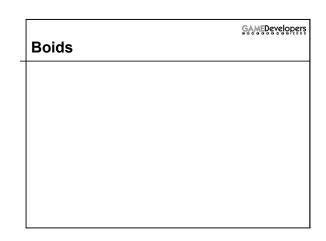
- Director: Tim Burton, Producer: Warner Brothers • 1993: *Cliffhanger*, (feature) Director: Renny Harlin, Producer: Carolco.
- 1994: *The Lion King*, (feature) Director: Allers / Minkoff, Producer: Disney.

Applications of Behavioral GAMEDEvelopers Animations

- 1996: From Dusk Till Dawn, (feature)
 Director: Robert Rodriguez, Producer: Miramax
- 1996: The Hunchback of Notre Dame, (feature) Director: Trousdale / Wise, Producer: Disney.
- 1997: *Hercules,* (feature) Director: Clements / Musker, Producer: Disney.
- 1997: Spawn, (feature) Director: Dippé, Producer: Disney.
- 1997: Starship Troopers, (feature)
 Director: Verhoeven, Producer: Tristar Pictures.
- 1998: *Mulan,* (feature)
 Director: Bancroft/Cook, Producer: Disney.

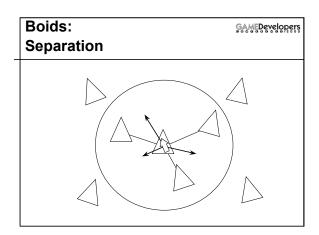
Applications of Behavioral GAMEDevelopers Animations

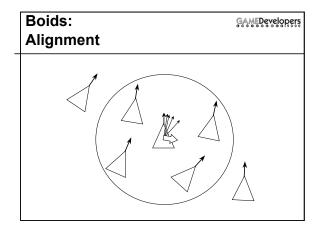

- 1998: Antz, (feature)
- Director: Darnell/Guterman/Johnson, Producer: DreamWorks/PDI. • 1998: A Bugs Life, (feature)
- Director: Lasseter/Stanton, Producer: Disney/Pixar.
- 1998: The Prince of Egypt, (feature) Director: Chapman/Hickner/Wells, Producer: DreamWorks.
- 1999: Star Wars: Episode I---The Phantom Menace, (feature) Director: Lucas, Producer: Lucasfilm.
- 2000: Lord of the Rings: the Fellowship of the Ring (feature) Director: Jackson, Producer: New Line Cinema.

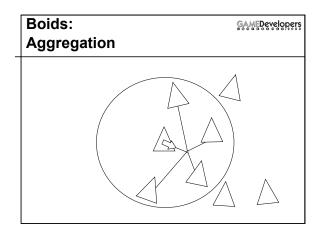

Autonomous Character GAMEDevelopers Case Studies

Hand programmed

- steering behavior library
- boids
- hockey players
- Evolution
 - corridor following
 - tag players

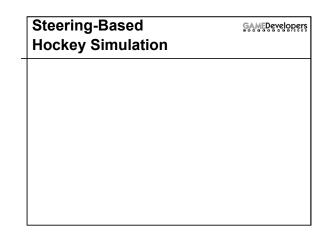

Steering Behaviors Steering Behaviors seek or flee from a location pursuit and evasion arrival (position / velocity / time constraints) obstacle avoidance / containment path / wall / flow field following group behaviors unaligned collision avoidance Leader following flocking (three components)

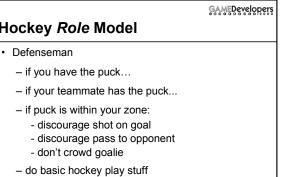




Boid Flocking	GAMEDevelopers
(three component steering behaviors	;)

- Separation
 - steer to move away from nearby flockmates
- Alignment
 - steer toward average heading of nearby flockmates (accelerate to match average velocity of nearby flockmates)
- Cohesion
 - steer towards average position of nearby flockmates



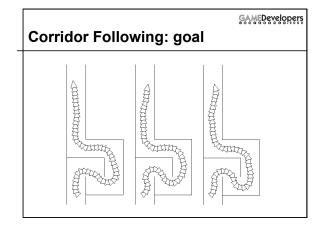

Boids (full behavioral model)	GAMEDevelopers
Obstacle avoidance	
Flocking	
– separation	
– alignment	
- cohesion	
 Migratory (attraction / repulsion) 	

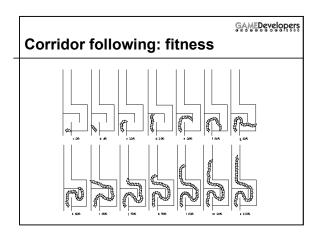
Boids Web Page

Boids Video	GAMEDevelopers
boids vic	len
	<u></u>

GAMEDevelopers	
Basic Hockey Player	Hocke
Physical model point mass Imited force and velocity collicion modeling (collection)	 Defense – if you
 collision modeling (as cylinder) Awareness of position and velocity of players and puck position of rink and markings 	– if yc – if pu - d
 Behaviors: avoid rink walls and goal nets chase loose puck, skate towards location Assigned role 	d - d - do I –

Hockey Dem	10	GAMEDevelopers
	hockey demo)


Evolution of Behavior	GAMEDevelopers


	GAMEDevelopers
Evolution of Behavior	
Agent in simulated world	
Evolution of	
 behavioral controller 	
 agent morphology (see Sims SIGGR 	RAPH 94)
Fitness based on agent's performance	е
 objective fitness metric 	
 – competitive fitness 	

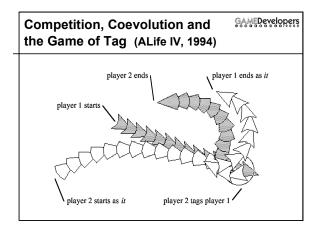
	GAMEDeveloper
Corridor Following	

Evolution of Corridor GAMEDevelopers Following Behavior in a Noisy World

- Evolve controller for abstract vehicle
- Task: corridor following
 - noisy range sensors
 - noisy steering mechanism
- Evolution of sensor morphology

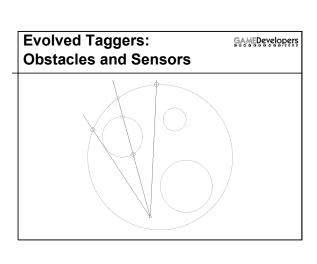
GAMEDevelopers Corridor Following: Results

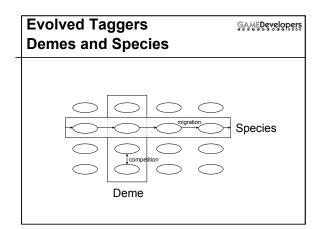
- · Works well
- Difficulty strongly related to the representation used
- · "Competent" controllers easy to find
- · Reliability of controllers is difficult to measure

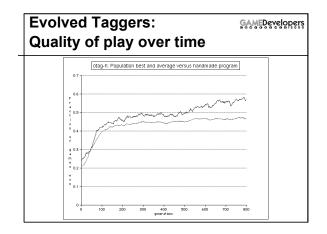

Corridor Following: GAMEDevelopers Experimental Design

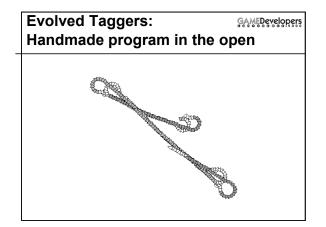
- · Vehicle model
 - constant speed
 - limited steering angle
 - noisy sensors (arbitrary number & direction)
 - noisy steering mechanism
- Genetic Programming
 - hybrid steady-state model
 - worst of four noisy trials
 - population: 2000
 - size limit for evolved programs: 50

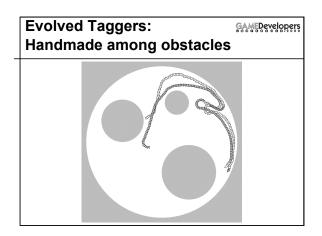
Coevolution of Tag Players

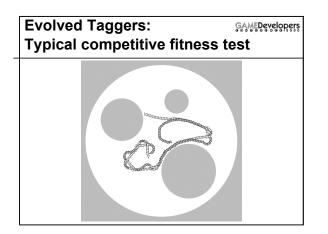

GAMEDevelopers Coevolution of Tag Players

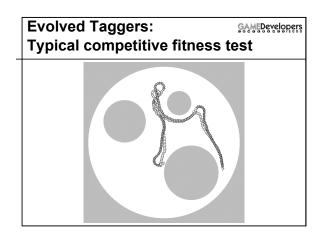

- · The game of tag
 - symmetrical pursuit and evasion
 role reversal
- · Goal: discover steering behavior for tag
- Method: emergence of behavior
 - coevolution
 - competitive fitness
- · Self-organization: no expert knowledge required




GAMEDevelopers Coevolution of Taggers Revisited


- December 1999 to present
- Similar to 1994 work, but:
 - longer games (25-)150)
 - steering angle limits
 - obstacles and sensors
 - demes and species
 - improved performance
 (faster computers, compilation of evolved programs)





Coevolution of Tag Players: GAMEDevelopers Results

- It works! (after a lot of tweaking)
- · An ecology of competing behaviors did arise
- Originally, evolved behaviors had been sub-optimal (perhaps do to *collusion*: "live and let live")
- Finally (after demes, species, and harsh penalties) the evolved tag players have exceeded the quality of play of my hand-crafted player.

Conclusion

- Autonomous characters:
 - add richness and complexity to virtual worlds
 - $-\,$ automate creation of groups and crowd scenes
 - allow life-like improvisational action
 - can react to unanticipated situations, like user input
- Games and animation provide many applications of, testbeds for, and problems to be solved by research in:

GAMEDevelopers

- artificial life
- artificial intelligence
- evolutionary computation
- and other biologically-inspired methods

ୢୢୢଢ଼ୄ୶ୄୄ୴ୄୄୖୄଢ଼ୄୄୄୡୄ୰ୄ