
MEMORY MEMORY
OPTIMIZATIONOPTIMIZATION

Christer EricsonChrister Ericson
Sony Computer Entertainment, Santa MonicaSony Computer Entertainment, Santa Monica

((christerchrister__ericsonericson@@playstationplaystation..sonysony.com).com)

Talk contents 1/2Talk contents 1/2
►►Problem statementProblem statement

!! Why �memory optimization?�Why �memory optimization?�
►►Brief architecture overviewBrief architecture overview

!! The memory hierarchyThe memory hierarchy
►►Optimizing for (code and) data cacheOptimizing for (code and) data cache

!! General suggestionsGeneral suggestions
!! Data structuresData structures

►►PrefetchingPrefetching and preloadingand preloading
►►Structure layoutStructure layout
►►Tree structuresTree structures
►►LinearizationLinearization cachingcaching

►►��

Talk contents 2/2Talk contents 2/2

►►��
►►AliasingAliasing

!! Abstraction penalty problemAbstraction penalty problem
!! Alias analysis (typeAlias analysis (type--based)based)
!! �restrict� pointers�restrict� pointers
!! Tips for reducingTips for reducing aliasingaliasing

Problem statementProblem statement

►► For the last 20For the last 20--something years�something years�
!! CPU speeds have increased ~60%/yearCPU speeds have increased ~60%/year
!! Memory speeds only decreased ~10%/yearMemory speeds only decreased ~10%/year

►► Gap covered by use of cache memoryGap covered by use of cache memory
►► Cache is underCache is under--exploitedexploited

!! Diminishing returns for larger cachesDiminishing returns for larger caches

►► Inefficient cache use = lower performanceInefficient cache use = lower performance
!! How increase cache utilization? CacheHow increase cache utilization? Cache--awareness!awareness!

Need more justification? 1/3Need more justification? 1/3

Instruction parallelism:
SIMD instructions consume
data at 2-8 times the rate

of normal instructions!

Need more justification? 2/3Need more justification? 2/3

Proebsting�s law:

Improvements to
compiler technology

double program performance
every ~18 years!

Corollary: Don�t expect the compiler to do it for you!Corollary: Don�t expect the compiler to do it for you!

Need more justification? 3/3Need more justification? 3/3

On Moore�s law:

►Consoles don�t follow it (as such)
! Fixed hardware
! 2nd/3rd generation titles must get

improvements from somewhere

Brief cache reviewBrief cache review
►► CachesCaches

!! Code cache for instructions, data cache for dataCode cache for instructions, data cache for data
!! Forms a memory hierarchyForms a memory hierarchy

►► Cache linesCache lines
!! Cache divided into cache lines of ~32/64 bytes eachCache divided into cache lines of ~32/64 bytes each
!! Correct unit in which to count memory accessesCorrect unit in which to count memory accesses

►► DirectDirect--mappedmapped
!! For n KB cache, bytes at k, k+n, k+2n, � map to same For n KB cache, bytes at k, k+n, k+2n, � map to same

cache linecache line
►► NN--way setway set--associativeassociative

!! Logical cache line corresponds to N physical linesLogical cache line corresponds to N physical lines
!! Helps minimize cache line thrashingHelps minimize cache line thrashing

The memory hierarchyThe memory hierarchy

Roughly:

Main memory

L2 cache

1 cycleCPU

~1-5 cyclesL1 cache

~5-20 cycles

~40-100 cycles

Some cache specsSome cache specs

~128~128--512K512K~32~32--64K64KPC
128K 8128K 8--way unifiedway unified16K/16K 416K/16K 4--waywayXBOX
256K 2256K 2--way unifiedway unified32K/32K32K/32K�� 88--waywayGameCube

N/AN/A16K/8K16K/8K�� 22--waywayPS2
L2 cacheL1 cache (I/D)

►►��16K data scratchpad important part of design16K data scratchpad important part of design
►►��configurable as 16K 4configurable as 16K 4--way + 16K scratchpadway + 16K scratchpad

Foes: 3 C�s of cache missesFoes: 3 C�s of cache misses

►► Compulsory missesCompulsory misses
!! Unavoidable misses when data read for first timeUnavoidable misses when data read for first time

►► Capacity missesCapacity misses
!! Not enough cache space to hold all active dataNot enough cache space to hold all active data
!! Too much data accessedToo much data accessed inbetweeninbetween successive usesuccessive use

►► Conflict missesConflict misses
!! Cache thrashing due to data mapping to same cache Cache thrashing due to data mapping to same cache

lineslines

Friends: Introducing the 3 R�sFriends: Introducing the 3 R�s
►► Rearrange (code, data)Rearrange (code, data)

!! Change layout to increase spatial localityChange layout to increase spatial locality

►► Reduce (size, # cache lines read)Reduce (size, # cache lines read)
!! Smaller/smarter formats, compressionSmaller/smarter formats, compression

►► Reuse (cache lines)Reuse (cache lines)
!! Increase temporal (and spatial) localityIncrease temporal (and spatial) locality

XX(x)(x)Reuse
(x)(x)XXXXReduce
XX(x)(x)XXRearrange

ConflictCapacityCompulsory

Measuring cache utilizationMeasuring cache utilization
►►ProfileProfile

!! CPU performance/event countersCPU performance/event counters
►►Give memory access statisticsGive memory access statistics
►►But not access patterns (e.g. stride)But not access patterns (e.g. stride)

!! Commercial productsCommercial products
►►SN Systems� Tuner, Metrowerks� CATS, Intel�sSN Systems� Tuner, Metrowerks� CATS, Intel�s VTuneVTune

!! Roll your ownRoll your own
►►InIn gccgcc ��--p� option + define p� option + define __mcountmcount()()
►►Instrument code with calls to logging classInstrument code with calls to logging class

!! Do backDo back--ofof--thethe--envelope comparisonenvelope comparison
►►Study the generated codeStudy the generated code

Code cache optimization 1/2Code cache optimization 1/2

►►LocalityLocality
!! Reorder functionsReorder functions

►►Manually within fileManually within file
►►Reorder object files during linking (order inReorder object files during linking (order in makefilemakefile))
►►__attribute__ ((section ("__attribute__ ((section ("xxxxxx")))"))) inin gccgcc

!! Adapt coding styleAdapt coding style
►►Monolithic functionsMonolithic functions
►►Encapsulation/OOP is less code cache friendlyEncapsulation/OOP is less code cache friendly

!! Moving targetMoving target
!! Beware various implicit functions (e.g.Beware various implicit functions (e.g. fptodpfptodp))

Code cache optimization 2/2Code cache optimization 2/2
►►SizeSize

!! Beware:Beware: inlininginlining, unrolling, large macros, unrolling, large macros
!! KISSKISS

►►AvoidAvoid featuritisfeaturitis
►►Provide multiple copies (also helps locality)Provide multiple copies (also helps locality)

!! Loop splitting and loop fusionLoop splitting and loop fusion
!! Compile for size (�Compile for size (�--Os� inOs� in gccgcc))
!! Rewrite inRewrite in asmasm (where it counts)(where it counts)

►►Again, study generated codeAgain, study generated code
!! Build intuition about code generatedBuild intuition about code generated

Data cache optimizationData cache optimization
►►Lots and lots of stuff�Lots and lots of stuff�

!! �Compressing� data�Compressing� data
!! Blocking and strip miningBlocking and strip mining
!! Padding data to align to cache linesPadding data to align to cache lines
!! Plus other things I won�t go intoPlus other things I won�t go into

►►What I will talk about�What I will talk about�
!! PrefetchingPrefetching and preloading data into cacheand preloading data into cache
!! CacheCache--conscious structure layoutconscious structure layout
!! Tree data structuresTree data structures
!! LinearizationLinearization cachingcaching
!! Memory allocationMemory allocation
!! AliasingAliasing and �antiand �anti--aliasingaliasing��

PrefetchingPrefetching and preloadingand preloading

►►SoftwareSoftware prefetchingprefetching
!! Not too earlyNot too early �� data may be evicted before usedata may be evicted before use
!! Not too lateNot too late �� data not fetched in time for usedata not fetched in time for use
!! GreedyGreedy

►►Preloading (pseudoPreloading (pseudo--prefetchingprefetching))
!! HitHit--underunder--miss processingmiss processing

SoftwareSoftware prefetchingprefetching

// Loop through and process all 4n elements
for (int i = 0; i < 4 * n; i++)

Process(elem[i]);

const int kLookAhead = 4; // Some elements ahead
for (int i = 0; i < 4 * n; i += 4) {

Prefetch(elem[i + kLookAhead]);
Process(elem[i + 0]);
Process(elem[i + 1]);
Process(elem[i + 2]);
Process(elem[i + 3]);

}

GreedyGreedy prefetchingprefetching

void PreorderTraversal(Node *pNode) {
// Greedily prefetch left traversal path
Prefetch(pNode->left);
// Process the current node
Process(pNode);
// Greedily prefetch right traversal path
Prefetch(pNode->right);
// Recursively visit left then right subtree
PreorderTraversal(pNode->left);
PreorderTraversal(pNode->right);

}

Preloading (pseudoPreloading (pseudo--prefetchprefetch))

Elem a = elem[0];
for (int i = 0; i < 4 * n; i += 4) {

Elem e = elem[i + 4]; // Cache miss, non-blocking
Elem b = elem[i + 1]; // Cache hit
Elem c = elem[i + 2]; // Cache hit
Elem d = elem[i + 3]; // Cache hit
Process(a);
Process(b);
Process(c);
Process(d);
a = e;

}

(NB: This code reads one element beyond the end of the(NB: This code reads one element beyond the end of the elemelem array.) array.)

StructuresStructures

►►CacheCache--conscious layoutconscious layout
!! Field reordering (usually grouped conceptually)Field reordering (usually grouped conceptually)
!! Hot/cold splittingHot/cold splitting

►►Let use decide formatLet use decide format
!! Array of structuresArray of structures
!! Structures of arraysStructures of arrays

►►Little compiler supportLittle compiler support
!! Easier for nonEasier for non--pointer languages (Java)pointer languages (Java)
!! C/C++: do it yourselfC/C++: do it yourself

Field reorderingField reordering
struct S {

void *key;
int count[20];
S *pNext;

};

struct S {
void *key;
S *pNext;
int count[20];

};

void Foo(S *p, void *key, int k) {
while (p) {

if (p->key == key) {
p->count[k]++;
break;

}
p = p->pNext;

}
}

►►Likely accessed Likely accessed
together so together so
store them store them
together!together!

Hot/cold splittingHot/cold splitting
Cold fields:Cold fields:

struct S {
void *key;
S *pNext;
S2 *pCold;

};

Hot fields:Hot fields:
struct S2 {

int count[10];
};

►►Allocate all �Allocate all �structstruct S� from a memory poolS� from a memory pool
!! Increases coherenceIncreases coherence

►►Prefer arrayPrefer array--style allocationstyle allocation
!! No need for actual pointer to cold fieldsNo need for actual pointer to cold fields

Hot/cold splittingHot/cold splitting

Beware compiler paddingBeware compiler padding

struct X {
int8 a;
int64 b;
int8 c;
int16 d;
int64 e;
float f;

};

Assuming 4Assuming 4--byte floats, for most compilersbyte floats, for most compilers sizeofsizeof(X) == 40,(X) == 40,
sizeofsizeof(Y) == 40, and(Y) == 40, and sizeofsizeof(Z) == 24.(Z) == 24.

struct Z {
int64 b;
int64 e;
float f;
int16 d;
int8 a;
int8 c;

};

struct Y {
int8 a, pad_a[7];
int64 b;
int8 c, pad_c[1];
int16 d, pad_d[2];
int64 e;
float f, pad_f[1];

};

D
ecreasin

g size!

Cache performance analysisCache performance analysis

►► Usage patternsUsage patterns
!! Activity Activity �� indicates hot or cold fieldindicates hot or cold field
!! Correlation Correlation �� basis for field reorderingbasis for field reordering

►► Logging toolLogging tool
!! Access all class members throughAccess all class members through accessoraccessor functionsfunctions
!! Manually instrument functions to call Log() functionManually instrument functions to call Log() function
!! Log() function�Log() function�

►► takes object type + member field as argumentstakes object type + member field as arguments
►►hashhash--maps currentmaps current argsargs to count field accessesto count field accesses
►►hashhash--maps current + previousmaps current + previous argsargs to trackto track pairwisepairwise accessesaccesses

Tree data structuresTree data structures

►►RearrangeRearrange nodesnodes
!! Increase spatial localityIncrease spatial locality
!! CacheCache--aware vs. cacheaware vs. cache--oblivious layoutsoblivious layouts

►►ReduceReduce sizesize
!! Pointer elimination (using implicit pointers)Pointer elimination (using implicit pointers)
!! �Compression��Compression�

►►QuantizeQuantize valuesvalues
►►Store data relative to parent nodeStore data relative to parent node

BreadthBreadth--first orderfirst order

►► PointerPointer--less: Left(n)=2n, Right(n)=2n+1less: Left(n)=2n, Right(n)=2n+1
►► Requires storage for complete tree of height HRequires storage for complete tree of height H

DepthDepth--first orderfirst order

►► Left(n) = n + 1, Right(n) = stored indexLeft(n) = n + 1, Right(n) = stored index
►► Only stores existing nodesOnly stores existing nodes

vanvan EmdeEmde Boas layoutBoas layout

►► �Cache�Cache--oblivious�oblivious�
►► Recursive constructionRecursive construction

A compact static kA compact static k--d treed tree
union KDNode {

// leaf, type 11
int32 leafIndex_type;
// non-leaf, type 00 = x,
// 01 = y, 10 = z-split
float splitVal_type;

};

LinearizationLinearization cachingcaching

►►Nothing better than linear dataNothing better than linear data
!! Best possible spatial localityBest possible spatial locality
!! EasilyEasily prefetchableprefetchable

►►SoSo linearizelinearize data at runtime!data at runtime!
!! Fetch data, storeFetch data, store linearizedlinearized in a custom cachein a custom cache
!! Use it toUse it to linearizelinearize��

►►hierarchy traversalshierarchy traversals
►►indexed dataindexed data
►►other randomother random--access stuffaccess stuff

Memory allocation policyMemory allocation policy

►►Don�t allocate from heap, use poolsDon�t allocate from heap, use pools
!! No block overheadNo block overhead
!! Keeps data togetherKeeps data together
!! Faster too, and no fragmentationFaster too, and no fragmentation

►►Free ASAP, reuse immediatelyFree ASAP, reuse immediately
!! Block is likely in cache so reuse itsBlock is likely in cache so reuse its cachelinescachelines
!! First fit, using free listFirst fit, using free list

The curse ofThe curse of aliasingaliasing

What isWhat is aliasingaliasing??

int Foo(int *a, int *b) {
*a = 1;
*b = 2;
return *a;

}

int n;
int *p1 = &n;
int *p2 = &n;

Aliasing is multiple
references to the

same storage location

AliasingAliasing is also missed opportunities for optimizationis also missed opportunities for optimization

What value is
returned here?
Who knows!

The curse ofThe curse of aliasingaliasing

►►What is causingWhat is causing aliasingaliasing??
!! PointersPointers
!! Global variables/class members make it worseGlobal variables/class members make it worse

►►What is the problem withWhat is the problem with aliasingaliasing??
!! Hinders reordering/elimination of loads/storesHinders reordering/elimination of loads/stores

►►Poisoning data cachePoisoning data cache
►►Negatively affects instruction schedulingNegatively affects instruction scheduling
►►Hinders commonHinders common subexpressionsubexpression elimination (CSE), elimination (CSE),

looploop--invariant code motion, constant/copy invariant code motion, constant/copy
propagation, etc.propagation, etc.

How do we do �antiHow do we do �anti--aliasing�aliasing�??

►►What can be done aboutWhat can be done about aliasingaliasing??
!! Better languagesBetter languages

►►LessLess aliasingaliasing, lower abstraction penalty, lower abstraction penalty��

!! Better compilersBetter compilers
►►Alias analysis such as typeAlias analysis such as type--based alias analysisbased alias analysis��

!! Better programmers (aiding the compiler)Better programmers (aiding the compiler)
►►That�s you, after the next 20 slides!That�s you, after the next 20 slides!

!! Leap of faithLeap of faith
►►--fnofno--aliasingaliasing

�� To be definedTo be defined

Matrix multiplication 1/3Matrix multiplication 1/3

Mat22mul(float a[2][2], float b[2][2], float c[2][2]){
for (int i = 0; i < 2; i++) {

for (int j = 0; j < 2; j++) {
a[i][j] = 0.0f;
for (int k = 0; k < 2; k++)

a[i][j] += b[i][k] * c[k][j];
}

}
}

Consider optimizing a 2x2 matrix multiplication:Consider optimizing a 2x2 matrix multiplication:

How do we typically optimize it? Right, unrolling!How do we typically optimize it? Right, unrolling!

Matrix multiplication 2/3Matrix multiplication 2/3

// 16 memory reads, 4 writes
Mat22mul(float a[2][2], float b[2][2], float c[2][2]){

a[0][0] = b[0][0]*c[0][0] + b[0][1]*c[1][0];
a[0][1] = b[0][0]*c[0][1] + b[0][1]*c[1][1]; //(1)
a[1][0] = b[1][0]*c[0][0] + b[1][1]*c[1][0]; //(2)
a[1][1] = b[1][0]*c[0][1] + b[1][1]*c[1][1]; //(3)

}

StaightforwardStaightforward unrolling results in this:unrolling results in this:

►► But wait! There�s a hidden assumption! a is not b or c!But wait! There�s a hidden assumption! a is not b or c!
►► Compiler doesn�t (cannot) know this!Compiler doesn�t (cannot) know this!

!! (1) Must(1) Must refetchrefetch b[0][0] and b[0][1]b[0][0] and b[0][1]
!! (2) Must(2) Must refetchrefetch c[0][0] and c[1][0]c[0][0] and c[1][0]
!! (3) Must(3) Must refetchrefetch b[0][0], b[0][1], c[0][0] and c[1][0]b[0][0], b[0][1], c[0][0] and c[1][0]

Matrix multiplication 3/3Matrix multiplication 3/3

// 8 memory reads, 4 writes
Mat22mul(float a[2][2], float b[2][2], float c[2][2]){

float b00 = b[0][0], b01 = b[0][1];
float b10 = b[1][0], b11 = b[1][1];
float c00 = c[0][0], c01 = c[0][1];
float c10 = c[1][0], c11 = c[1][1];

a[0][0] = b00*c00 + b01*c10;
a[0][1] = b00*c01 + b01*c11;
a[1][0] = b10*c00 + b11*c10;
a[1][1] = b10*c01 + b11*c11;

}

A correct approach is instead writing it as:A correct approach is instead writing it as:

Consume
inputs�

�before
producing
outputs

Abstraction penalty problemAbstraction penalty problem

►►Higher levels of abstraction have a negative Higher levels of abstraction have a negative
effect on optimizationeffect on optimization
!! Code broken into smaller generic subunitsCode broken into smaller generic subunits
!! Data and operation hidingData and operation hiding

►►Cannot make local copy of e.g. internal pointersCannot make local copy of e.g. internal pointers
►►Cannot hoist constant expressions out of loopsCannot hoist constant expressions out of loops

►►Especially because ofEspecially because of aliasingaliasing issuesissues

C++ abstraction penaltyC++ abstraction penalty

►► Lots of (temporary) objects aroundLots of (temporary) objects around
!! IteratorsIterators
!! Matrix/vector classesMatrix/vector classes

►► Objects live in heap/stackObjects live in heap/stack
!! Thus subject toThus subject to aliasingaliasing
!! Makes tracking of current member value very difficultMakes tracking of current member value very difficult
!! But tracking required to keep values in registers!But tracking required to keep values in registers!

►► ImplicitImplicit aliasingaliasing through the through the thisthis pointerpointer
!! Class members are virtually as bad as global variablesClass members are virtually as bad as global variables

C++ abstraction penaltyC++ abstraction penalty
Pointer members in classes may alias other members:Pointer members in classes may alias other members:

class Buf {
public:

void Clear() {
for (int i = 0; i < numVals; i++)

pBuf[i] = 0;
}

private:
int numVals, *pBuf;

}

Code likely toCode likely to refetch refetch numValsnumVals each iteration!each iteration!

numVals not a
local variable!

May be
aliased

by pBuf!

C++ abstraction penaltyC++ abstraction penalty

class Buf {
public:

void Clear() {
for (int i = 0, n = numVals; i < n; i++)

pBuf[i] = 0;
}

private:
int numVals, *pBuf;

}

We know thatWe know that aliasingaliasing won�t happen, and canwon�t happen, and can
manually solve themanually solve the aliasingaliasing issue by writing code as:issue by writing code as:

C++ abstraction penaltyC++ abstraction penalty
SinceSince pBufpBuf[i][i] can only aliascan only alias numValsnumVals in the firstin the first
iteration, a quality compiler can fix this problem byiteration, a quality compiler can fix this problem by
peeling the loop once, turning it into:peeling the loop once, turning it into:

void Clear() {
if (numVals >= 1) {

pBuf[0] = 0;
for (int i = 1, n = numVals; i < n; i++)

pBuf[i] = 0;
}

}

Q: Does Q: Does youryour compiler do this optimization?!compiler do this optimization?!

TypeType--based alias analysisbased alias analysis

►► SomeSome aliasingaliasing the compiler can catchthe compiler can catch
!! A powerful tool is A powerful tool is typetype--based alias analysisbased alias analysis

Use language types
to disambiguate

memory
references!

TypeType--based alias analysisbased alias analysis

►►ANSI C/C++ states that�ANSI C/C++ states that�
!! Each area of memory can only be associated Each area of memory can only be associated

with one type during its lifetimewith one type during its lifetime
!! AliasingAliasing may only occur between references of may only occur between references of

the same the same compatiblecompatible typetype

►►Enables compiler to rule outEnables compiler to rule out aliasingaliasing
between references of nonbetween references of non--compatible typecompatible type
!! Turned on with Turned on with ��fstrictfstrict--aliasingaliasing inin gccgcc

Compatibility of C/C++ typesCompatibility of C/C++ types

►►In short�In short�
!! Types compatible if differing by Types compatible if differing by signedsigned, ,

unsignedunsigned, , constconst or or volatilevolatile
!! charchar and and unsigned charunsigned char compatible with any compatible with any

typetype
!! Otherwise not compatibleOtherwise not compatible

►►(See standard for full details.)(See standard for full details.)

What TBAA can do for youWhat TBAA can do for you

void Foo(float *v, int *n) {
int t = *n;
for (int i = 0; i < t; i++)

v[i] += 1.0f;
}

void Foo(float *v, int *n) {
for (int i = 0; i < *n; i++)

v[i] += 1.0f;
}

It can turn this:It can turn this:

Possible aliasing
between

v[i] and *n

into this:into this:

No aliasing possible
so fetch *n once!

What TBAA can also doWhat TBAA can also do
►► Cause obscure bugs in nonCause obscure bugs in non--conforming code!conforming code!

!! Beware especially soBeware especially so--called �type punning�

uint32 i;
float f;
i = *((uint32 *)&f);

uint32 i;
union {

float f;
uchar8 c[4];

} u;
u.f = f;
i = (u.c[3]<<24L)+

(u.c[2]<<16L)+
...;

called �type punning�

uint32 i;
union {

float f;
uint32 i;

} u;
u.f = f;
i = u.i;

Illegal
C/C++ code!

Allowed
By gcc

Required
by standard

RestrictRestrict--qualified pointersqualified pointers

►► restrictrestrict keywordkeyword
!! New to 1999 ANSI/ISO C standardNew to 1999 ANSI/ISO C standard
!! Not in C++ standard yet, but supported by many C++ Not in C++ standard yet, but supported by many C++

compilerscompilers
!! A hint only, so may do nothing and still be conformingA hint only, so may do nothing and still be conforming

►► A restrictA restrict--qualified pointer (or reference)�qualified pointer (or reference)�
!! �is basically a promise to the compiler that for the �is basically a promise to the compiler that for the

scope of the pointer, the target of the pointer will only scope of the pointer, the target of the pointer will only
be accessed through that pointer (and pointers copied be accessed through that pointer (and pointers copied
from it).from it).

!! (See standard for full details.)(See standard for full details.)

Using the restrict keywordUsing the restrict keyword

void Foo(float v[], float *c, int n) {
float tmp = *c + 1.0f;
for (int i = 0; i < n; i++)

v[i] = tmp;
}

void Foo(float v[], float *c, int n) {
for (int i = 0; i < n; i++)

v[i] = *c + 1.0f;
}

Given this code:Given this code:

You really want the compiler to treat it as if written:You really want the compiler to treat it as if written:

But because of possibleBut because of possible aliasingaliasing it cannot!it cannot!

Using the restrict keywordUsing the restrict keyword

v[] = 1, 1, 1, 1, 1, 2, 2, 2, 2, 2

v[] = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

giving for the first version:giving for the first version:

and for the second version:and for the second version:

float a[10];
a[4] = 0.0f;
Foo(a, &a[4], 10);

For example, the code might be called as:For example, the code might be called as:

The compiler must be conservative, andThe compiler must be conservative, and
cannot perform the optimization!cannot perform the optimization!

Solving theSolving the aliasingaliasing problemproblem

void Foo(float * restrict v, float *c, int n) {
for (int i = 0; i < n; i++)

v[i] = *c + 1.0f;
}

The fix? Declaring the output as The fix? Declaring the output as restrictrestrict::

►► Alas, in practice may need to declare Alas, in practice may need to declare bothboth pointers restrict!pointers restrict!
!! A restrictA restrict--qualified pointer can grant access to nonqualified pointer can grant access to non--restrict pointerrestrict pointer
!! Full dataFull data--flow analysis required to detect thisflow analysis required to detect this
!! However, two restrictHowever, two restrict--qualified pointers are trivially nonqualified pointers are trivially non--aliasingaliasing!!
!! Also may work declaring second argument as �float * Also may work declaring second argument as �float * constconst c�c�

�const� doesn�t help�const� doesn�t help

void Foo(float v[], const float *c, int n) {
for (int i = 0; i < n; i++)

v[i] = *c + 1.0f;
}

Some might think this would work:Some might think this would work:

►► Wrong! Wrong! constconst promises almost nothing!promises almost nothing!
!! Says Says *c*c is const through is const through cc, , notnot that that *c*c is const in is const in

generalgeneral
!! Can be cast awayCan be cast away
!! For detecting programming errors, not fixingFor detecting programming errors, not fixing aliasingaliasing

Since *c is const, v[i]
cannot write to it, right?

SIMD + restrict = TRUESIMD + restrict = TRUE

►► restrictrestrict enables SIMD optimizationsenables SIMD optimizations

void VecAdd(int *a, int *b, int *c) {
for (int i = 0; i < 4; i++)

a[i] = b[i] + c[i];
}

Stores may alias loads.
Must perform operations
sequentially.

void VecAdd(int * restrict a, int *b, int *c) {
for (int i = 0; i < 4; i++)

a[i] = b[i] + c[i];
}

Independent loads and
stores. Operations can
be performed in parallel!

RestrictRestrict--qualified pointersqualified pointers

►►Important, especially with C++Important, especially with C++
!! Helps combat abstraction penalty problemHelps combat abstraction penalty problem

►►But beware�But beware�
!! Tricky semantics, easy to get wrongTricky semantics, easy to get wrong
!! Compiler won�t tell you about incorrect useCompiler won�t tell you about incorrect use
!! Incorrect use = slow painful death!Incorrect use = slow painful death!

Tips for avoidingTips for avoiding aliasingaliasing

►► Minimize use ofMinimize use of globalsglobals, pointers, references, pointers, references
!! Pass small variables byPass small variables by--valuevalue
!! Inline small functions taking pointer or reference Inline small functions taking pointer or reference

argumentsarguments

►► Use local variables as much as possibleUse local variables as much as possible
!! Make local copies of global and class member variablesMake local copies of global and class member variables

►► Don�t take the address of variables (with &)Don�t take the address of variables (with &)
►► restrictrestrict pointers and referencespointers and references
►► Declare variables close to point of useDeclare variables close to point of use
►► Declare sideDeclare side--effect free functions as effect free functions as constconst
►► Do manual CSE, especially of pointer expressionsDo manual CSE, especially of pointer expressions

That�s it! That�s it! �� Resources 1/2Resources 1/2
►► EricsonEricson,, ChristerChrister. Real. Real--time collision detection. Morgantime collision detection. Morgan--

KaufmannKaufmann, 2003. (Chapter on memory optimization), 2003. (Chapter on memory optimization)
►► Mitchell, Mark. TypeMitchell, Mark. Type--based alias analysis. Dr.based alias analysis. Dr. Dobb�sDobb�s

journal, October 2000.journal, October 2000.
►► Robison, Arch. Restricted pointers are coming. C/C++ Robison, Arch. Restricted pointers are coming. C/C++

Users Journal, July 1999. Users Journal, July 1999.
http://www.http://www.cujcuj.com/articles/1999/9907/9907d/9907d..com/articles/1999/9907/9907d/9907d.htmhtm

►► ChilimbiChilimbi,, TrishulTrishul. Cache. Cache--conscious data structures conscious data structures -- design design
and implementation. PhD Thesis. University of Wisconsin, and implementation. PhD Thesis. University of Wisconsin,
Madison, 1999.Madison, 1999.

►► ProkopProkop,, HaraldHarald. Cache. Cache--oblivious algorithms. Master�s oblivious algorithms. Master�s
Thesis. MIT, June, 1999.Thesis. MIT, June, 1999.

►► ��

http://www.cuj.com/articles/1999/9907/9907d/9907d.htm
http://www.cuj.com/articles/1999/9907/9907d/9907d.htm

Resources 2/2Resources 2/2
►► ��
►► Gavin, Andrew. Stephen White. Teaching an old dog new Gavin, Andrew. Stephen White. Teaching an old dog new

bits: How console developers are able to improve bits: How console developers are able to improve
performance when the hardware hasn�t changed.performance when the hardware hasn�t changed.
GamasutraGamasutra. November 12, 1999 . November 12, 1999
http://www.gamasutra.com/features/19991112/GavinWhite_01.htmhttp://www.gamasutra.com/features/19991112/GavinWhite_01.htm

►► Handy, Jim. The cache memory book. Academic Press, Handy, Jim. The cache memory book. Academic Press,
1998.1998.

►► MacrisMacris,, AlexandreAlexandre. Pascal. Pascal UrroUrro. Leveraging the power of . Leveraging the power of
cache memory.cache memory. GamasutraGamasutra. April 9, 1999 . April 9, 1999
http://www.gamasutra.com/features/19990409/cache_01.htmhttp://www.gamasutra.com/features/19990409/cache_01.htm

►► Gross,Gross, OrnitOrnit. Pentium III. Pentium III prefetchprefetch optimizations using theoptimizations using the
VTuneVTune performance analyzer.performance analyzer. GamasutraGamasutra. July 30, 1999 . July 30, 1999
http://www.http://www.gamasutragamasutra.com/features/19990730/.com/features/19990730/ssesse__prefetchprefetch_01._01.htmhtm

►► Truong, Dan. FranTruong, Dan. Franççois Bodin. Androis Bodin. Andréé Seznec. Improving Seznec. Improving
cache behavior of dynamically allocated data structures.cache behavior of dynamically allocated data structures.

http://www.gamasutra.com/features/19991112/GavinWhite_01.htm
http://www.gamasutra.com/features/19991112/GavinWhite_01.htm
http://www.gamasutra.com/features/19990409/cache_01.htm
http://www.gamasutra.com/features/19990730/sse_prefetch_01.htm

	MEMORY OPTIMIZATION
	Game Developers Conference, March 2003
	Talk contents 1/2
	Talk contents 2/2
	Problem statement
	Need more justification? 1/3
	Need more justification? 2/3
	Need more justification? 3/3
	Brief cache review
	The memory hierarchy
	Some cache specs
	Foes: 3 C’s of cache misses
	Friends: Introducing the 3 R’s
	Measuring cache utilization
	Code cache optimization 1/2
	Code cache optimization 2/2
	Data cache optimization
	Prefetching and preloading
	Software prefetching
	Greedy prefetching
	Preloading (pseudo-prefetch)
	Structures
	Field reordering
	Hot/cold splitting
	Hot/cold splitting
	Beware compiler padding
	Cache performance analysis
	Tree data structures
	Breadth-first order
	Depth-first order
	van Emde Boas layout
	A compact static k-d tree
	Linearization caching
	Memory allocation policy
	The curse of aliasing
	The curse of aliasing (cont.)
	How do we do ‘anti-aliasing’?
	Matrix multiplication 1/3
	Matrix multiplication 2/3
	Matrix multiplication 3/3
	Abstraction penalty problem
	C++ abstraction penalty
	C++ abstraction penalty (cont.1)
	C++ abstraction penalty (cont.2)
	C++ abstraction penalty (cont.3)
	Type-based alias analysis
	Type-based alias analysis (cont.)
	Compatibility of C/C++ types
	What TBAA can do for you
	What TBAA can also do
	Restrict-qualified pointers
	Using the restrict keyword
	Using the restrict keyword (cont.)
	Solving the aliasing problem
	‘const’ doesn’t help
	SIMD + restrict = TRUE
	Restrict-qualified pointers
	Tips for avoiding aliasing
	That’s it! – Resources 1/2
	Resources 2/2

