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Problem Definition

Finding the time, place, depth, or 
existence of contact between pairs of 
objects in a simulation

Collision



Common Subroutines in a 
Collision System

Collision detection: do two models overlap? 

Gap detection: does a given gap exist between 
two models?

Distance computation: what is the distance 
between the models?

Penetration depth computation: what is the 
amount of penetration?

Time of impact: what will be the time of impact of 
two moving bodies?



Variations of Collision Systems

Collision Scheduling Methods
– methods for choosing when to do collision 

checks
Object Representations
– geometric models for objects in a simulator

Broad & Narrow Phase Methods 
[Hubbard93]
– Broad phase: methods for culling collision 

checks
– Narrow phase: methods for performing each 

collision check



Variations of Collision Systems

Collision Scheduling Methods
– Fixed timestep
– Adaptive timestep

• Bisection
• Prediction



Fixed Timestep

Do collision checking at regular time intervals
– Pros:

• Collision scheduling is simple
• Performance is relatively predictable. 

– Cons:
• Can miss collisions
• Allows interpenetration of solids
• Needs penetration distance or some heuristic for 

computing a separating impulse
• Several opposing impulses can keep objects 

interpenetrating

t1t0



Adaptive Timestep 1:Bisection

When collision detected, bisect preceding time 
interval until models are separated but close 
enough to be considered colliding.
– Pros:

• Prevents penetrations - time is                                
backed up to earliest collision                              
before another forward step is taken

– Cons: 
• Can still miss collisions 
• Rapid collisions will stunt advance of time

t1t.75t.5t0



Adaptive Timestep 2: Prediction

Compute lower bound to time of impact (TOI) for 
a pair of models & schedule next collision check 
at this time.
– Pros:

• Delays collision checks for distant models
• Prevents penetration and missed collisions

– Cons: 
• Close contact increases frequency of checks
• TOI’s require fixed or bounded motion paths - user 

input or collision can invalidate all TOIs connected 
with a particular object.

t0 t1 t2 t3



Variations of Collision Systems

Object Representations
– Basic primitives

• e.g., spheres, cones, cylinders, boxes
– Polygons/polyhedra

• Polygon soups
• Convex polyhedra
• Closed meshes

– CSG, implicit rep., parametric rep.
– Unions



Variations of Collision Systems

Broad and Narrow Phases [Hubbard93]
– Broad phase: 

• bounding box methods
– uniform grid
– hierarchical hash tables
– sweep-and-prune

– Narrow phase: 
• convex models

– distance / penetration depth
• polygon soups

– collision / distance



Bounding Boxes
A very common broad-phase tool
Stationary object bounding box
– relevant to fixed timestep scheduling
– place an axes-aligned box around each object 

at a given instant
– only do narrow phase collision checking on 

pairs of models whose bounding boxes 
overlap



Bounding Boxes

Moving object bounding box              
[Mirtich96]
– bound sweep of object between                    

start and finish time
– overlapping boxes indicate possible collisions 

during that time interval
– applicable to prediction scheduling

• ordinarily need all TOIs to take a collision-free time 
step.

• instead, take a tentative step forward, but compute
TOIs for objects whose sweep bounding boxes 
overlap.

• truly advance to smallest TOI found



Uniform Grid
Need to avoid O(n2) box tests with n boxes
Uniform Grid
– divide space into regular grid of cells
– bucket each object box into cells it overlaps
– compare boxes in same cell only - called close

boxes in following slides.



Uniform Grid
Two tricks:
– if grid infinite, store only the finite number of 

nonempty buckets in a hash table
– several cells may contain the same pair of 

boxes: to report close pairs only once, count 
number of times pair found close in 2D table of 
close-counters [Mirtich96].
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Uniform Grid
Problem - choosing cell size
– If too large, many or all objects can                

fall in the same cell - still O(n2) cost

– If too small, each object covers many           
cells

• Hash table size grows
• Object updates more costly
• A box pair can share many cells

– If objects vary greatly in size, no cell size 
solves both problems.



Hierarchical Hash Table 
[Mirtich96]

Uses grids at several resolutions.
– n cell sizes chosen, ρ1 through ρn
– For any box size S, the ratio between S and 

some cell size ρk is bounded between two 
constants, 0 < α < 1, β > 1 :                                   
α < (S / ρk) < β

– i.e., a box takes up at least some fraction α of a 
cell size, but no more than β cell sizes at its  
“matching” resolution (denoted res(X), for   
box X)



Hierarchical Hash Table 
[Mirtich96]

1D example - boxes are intervals
– box inserted first in buckets at matching 

resolution - boxes in same buckets are close
– 2D table counts times each pair found close

hash table

boxes 

close



Hierarchical Hash Table 
[Mirtich96]

Boxes at different resolutions may overlap 
too:  
– Extend close to mean boxes X,Y that overlap 

the same bucket at the coarser of the two 
resolutions, res(X) and res(Y)

hash table

boxes 

closecloseclose



Hierarchical Hash Table 
[Mirtich96]

Finding all close boxes
– Each bucket has list A for boxes at its own          

resolution and list B for boxes at finer 
resolutions (Mirtich describes one list)

– For each box X,  
• Insert X in overlapped buckets at res(X): 

– put X in list A 
– any boxes in list A or B of these buckets are close

• Insert X in overlapped buckets at coarser resolutions:
– put X in list B
– any boxes in list A of these buckets are close

– Time bound O(n + c) where n is number of boxes and c 
is number of close box pairs

boxes at res(X)

boxes at 
finer res

Bucket at res(X)
A

B



Hierarchical Hash Table 
[Mirtich96]

For coherence - preserve hash table, close 
counters, and list of close boxes between 
invocations.
– When box leaves a bucket, decrement close

counters for close boxes in that bucket 
– When box enters a bucket, increment close 

counter for close boxes in that bucket
– Decrement to zero takes pair off the close pairs 

list; increment to 1 puts the pair on the list.
– A box that stays in the same buckets causes 

no updates to the data structures



Hierarchical Hash Table
[Mirtich96]

Extending to dynamically resized boxes:
– Scales of bounding boxes change as 

simulation progresses.
– Mirtich suggests that basing resolutions on 

maximum radii of objects is adequate.
Extending to 3D:
– Can create 3D grid at several resolutions.
– Could possibly create three 1D grids, and treat 

box intervals independently - box pair is close 
iff it is close in 3 dimensions.



Sweep and Prune [CLMP95]
(I-Collide)

Different scheme to cull bounding box 
comparisons - dimension reduction.
Data structures:
– On each coordinate axis, a box              

projects to an interval; keep a sorted             
list of interval endpoints on each axis.

– Keep a 2D table that stores for each              
pair of bounding boxes whether their     
intervals overlap on each axis.

– Keep a list of the overlapping boxes



Sweep and Prune [CLMP95]
(I-Collide)
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Sweep and Prune [CLMP95]
(I-Collide)

Algorithm:
– Assume data structures are valid for a frame of 

the simulation.
– As each box is updated for the next frame, 

modify the endpoints in the sorted lists, using 
insertion sort to keep lists in sorted order.

– Each swap of a minimum and maximum 
endpoint toggles overlap status for a pair of 
box intervals.

• if toggle completes 3 interval overlaps for a box pair, 
put on overlapping pairs list

• if box pair previously overlapped, take pair off the list



Sweep and Prune [CLMP95]
(I-Collide)

Coherence premise:
– With small shifts of box endpoints between 

frames, few swaps expected in sorted lists.
– Clustering problem - dice on a table 

[Mirtich96]:
• Each perturbation of a die vertically may 

require O(n) swaps, resulting in O(n2) cost.
– Can keep list for 1 axis only

• when a swap makes two intervals overlap, 
check other two dimensions of the box pair

• Thus, can drop 2 most problematic 
dimensions - still not a general answer to 
clustering problem



Variations of Collision Systems

Narrow phase: 
– theory: Minkowski Differences 
– convex polyhedra:distance/penetration depth

• GJK [GJK88]
• Lin-Canny [LC91]

– polygon soups: collision/distance 
• Sphere Trees [Quinlan94] [Hubbard96]
• OBB Trees [GLM96] 
• Swept Sphere Trees [LGLM98]



Minkowski Sums and Differences

Minkowski Sum (A, B) = { a + b |  a ∈ A,  b ∈ B } 

Minkowski Diff (A,B) = { a - b | a ∈ A, b ∈ B } =
Minkowski Sum (A, -B)

A and B collide iff Minkowski Diff(A,B) contains 
origin.



A

A B

Some Minkowski 
Differences

B

A-B

A-B



Minkowski Diff(Translated(A,t1), Translated(B, t2)) = 
Translated (Minkowski Diff(A,B), t1 - t2)

⇒ Translated(A, t1) and Translated(B, t2) intersect iff 
Minkowski Diff(A,B) contains point t2  - t1.  

Minkowski Difference 
and Translation



If A & B convex, Minkowski Diff(A,B) is convex
Distance:
– distance(A,B) = min a ∈ A,  b∈ B || a - b ||2
– distance(A,B) = min c ∈ Minkowski-Difference(A,B) || c ||2
– if A and B disjoint, c is closest point to origin on 

boundary of Minkowski difference

Penetration-Depth:
– penetration (A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ }
– penetration (A,B) = mint ∉Minkowski-Difference(A,B) || t ||2
– if A and B intersecting, t is closest point to origin on 

boundary of Minkowski difference

Other Properties



Other Properties

However, distance & penetration-depth not 
equally matched problems, even for convex 
models:
– Distance - one local minimum

– Penetration Depth - many local minima



Practicality

Expensive to compute boundary of Minkowski
Difference:
– structure changes if objects rotate independently
– For two convex polyhedra with m and n vertices, 

Minkowski Difference may take O(m × n)
– For polygon soups, no practical algorithm known.

However, GJK algorithm uses Minkowski
Difference quite efficiently to find distance, 
computing it on demand.



GJK Method for Convex Polyhedra
GJK-DistanceToOrigin ( P )   // dimension is m
1.     Initialize point set P0 with m+1 or fewer points of P
2. k  = 0
3. while (TRUE) {
4.  if origin is within CH( Pk ), return 0
5.  else  { 
6.    find x ∈ CH(Pk) closest to origin, and simplex Sk ⊂ Pk s.t. x ∈ CH(Sk)
7. see if any point p-x in P more extremal in direction -x
8.  if no such point is found, return |x|
9. else {
10. Pk+1 = Sk ∪ {p-x}
11. k = k + 1
12. }
13. }
14. }



GJK - 2D Example



Each iteration of the while loop requires O(n) 
time.  

O(n) iterations possible, but authors claim 
between 3 and 6 iterations on average for any 
problem size, making this expected linear.

Trivial O(n) algorithms exist if we are given the 
boundary representation of a convex object, but 
GJK will work on point sets - computes CH lazily.

Also, extends readily to two convex point sets

GJK - Running Time



A = CH(A′)   A′ = { a1, a2, ... , an }
B = CH(B′)   B′ = { b1, b2, ... , bm }

Minkowski-Diff(A,B) = CH(P), P = {a - b | a∈ A′, b∈ B′}
Thus, GJK-DistanceToOrigin(P) will find distance(A, B), 
but P has m × n points.
Solution - compute points of P on demand:
– p-x = a-x - bx where a-x is the point of A′ extremal in direction -x, 

and bx is the point of B′ extremal in direction x.
The loop body would now take O(n + m) time, 
producing the same expected linear performance 
overall.

GJK - Two Convex Objects



Penetration Depth [Cameron97]
– Estimate penetration depth by finding some point on 

Minkowski Difference boundary.
– Highest quality estimates with coherence and 

shallow intersections.

Coherence 
– Models may transform very little between distance 

checks.
– Cache previous closest points, search neighborhood 

of closest points find new closest points

GJK - Extensions



Foundations:
– Coherence in object transforms between 

distance checks.
– One can confirm that two features (edges, 

vertices, faces) are the closest points of two 
convex objects in constant time, given some 
preprocessing of the polyhedra.

Method:
– track closest points
– after each transformation, make expected 

constant time adjustment of closest points

Lin-Canny Method for Convex 
Polyhedra



Voronoi Regions

Localized verification of closest features 
made possible by precomputing an 
external Voronoi diagram for the 
polyhedron

External Voronoi diagram - divide space 
outside polyhedron into regions, such that 
points inside each region are closest to a 
corresponding “feature” - a face, edge, or 
vertex - of the polyhedron.



Voronoi Regions



Lin-Canny Algorithm

Given one feature from each polyhedron, find the 
closest points of the two features.  If each point is 
in the Voronoi region of the other feature, closest 
features have been found. 

Vb in Voronoi(Ea)

Pa in Voronoi(Vb)



Lin-Canny Algorithm

Otherwise, one of the points (call its feature F) is 
in the Voronoi region of another feature F′, and 
therefore closer to it.  Can select F and F′ as next 
candidate feature pair. 



Lin-Canny Running Time

Distance strictly decreases with each change of 
feature pair, and no pair of features can be 
selected twice.

Worst case O(m × n) pairs checked.  

Convergence to closest pair typically much 
better:
– “near” constant time in simulations with coherence.
– Closer to O(m + n) even in worst case.



Lin-Canny Extensions

Penetration Depth
– Original algorithm would not terminate if input 

polyhedra overlapped
– Extension divides interior of polyhedra into 

pseudo-Voronoi regions.  
– Overlap can be detected and penetration depth 

approximated.



Extensions of convex methods to non-convex 
models not obvious.
Convex assumptions no longer valid:
– Discontinuous change of closest features with 

transformations
– When a local minimum is found, no longer able to 

disregard rest of the model.

Non-Convex Models



Could decompose into convex pieces:
– Distance: take minimum distance over all pairs 

of pieces
– Penetration Depth: not maximum penetration 

depth, although can still estimate it.
Problems:
– If m & n are number of convex pieces in each 

model, O(m × n) pairs
– Minimal decomposition is NP-hard, although 

approximations exist for closed solids.
– No solution for polygon soups besides list of 

polygons

Non-Convex Models



BVHs can improve O(m×n) performance of 
distance & collision detection on m, n pieces
Most commonly associated with polygon soups:
– Each node has a shape that bounds a set of polygons.  
– Children contain volumes that each bound a different 

portion of the parent’s polygons.  
– The leaves of the hierarchy usually contain individual 

polygons.
A binary BVH for some line segments:

Bounding Volume Hierarchies



BVH Collision Detection

Check root BVs first
If BVs do not overlap, no                       
contained polygons  can                               
overlap
Else, subdivide one BV                                     
into its children, giving                                      
two new BV pairs 
Recursively check each pair



1. Recursive-Collide(BV a, BV b)   {
2. if (! bv-overlap(a,b)) return;
3. if (leaf(a) and leaf(b)) { 
4. tri-overlap(tri(a), tri(b))
5. }
6. else if (!leaf(a)) {
7. Recursive-Collide(lchild(a), b)
8. Recursive-Collide(rchild(a), b)
9. }
10. else {
11. Recursive-Collide(a, lchild(b))
12. Recursive-Collide(a, rchild(b))
13. }
14. }

BVH Collision Detection



Test at least one pair of triangles to get a 
candidate minimum distance.

Terminate recursion when distance between 
bounding volumes greater than candidate 
minimum distance.

BV distance generally more expensive than 
overlap - why?

BVH Distance Computation



1. Recursive-Distance(Real distance, BV a, BV b) {
2. if (bv-distance(a,b) > distance) return;
3. if (leaf(a) and leaf(b)) {
4. distance = min(distance, tri-distance(tri(a), tri(b)))
5. }
6. else if (leaf(b) or (!leaf(a) and size(a) > size(b))) {
7. Recursive-Distance(distance, lchild(a), b)
8. Recursive-Distance(distance, rchild(a), b)
9. }
10. else {
11. Recursive-Distance(distance, a, lchild(b))
12. Recursive-Distance(distance, a, rchild(b))
13. }
14. }

BVH Distance Computation



BVH Distance Computation

Distance Demo

Assume first candidate minimum distance 
found is the actual minimum distance.
For each bv test, could use either:
– bv-distance(a,b) > distance
– !bv-overlap(a, b grown by distance)

i.e., distance with BVH at its best is like 
collision detection with one BVH grown by 
minimum distance
Explains why performance is worse.



BV Types
Spheres [Hubbard93, Quinlan94]

AABBs [PML95, SOLID97]: axis-aligned bounding 
boxes

OBBs [GLM96, BCGMT96] - oriented bounding boxes

K-DOPs [KHM+96] - polytopes with k discrete face 
orientations

Convex Hulls [LC92, Lin93]

Spherical Shells [KPLM98] - portions of space between 
concentric spheres

Swept-spheres - sphere extended primitives



Evaluating BV Types

Common BV choice trade-off:

– tightness of fit; power to “prune” search

– speed of BV overlap/distance tests - includes 
speed of transforming BV as BVH rotates



Spheres

Very fast overlap/distance tests
Poor fit for elongated or flat geometry



AABBs

Very fast overlap/distance test without 
rotation. 
Tightness depends on orientation of geometry
With rotation, need OBB tests, or to realign 
boxes with axes (increases test cost)



OBBs

Overlap test more expensive, but well 
optimized / no optimized distance test yet.
Tighter fit, even for flat, long geometry. 



Convex Hull Tree

Overlap test very expensive - even with 
coherence.
Tightest fit among convex BVs



Evaluating BVHs
How BVs are placed around geometry is as 
important as which type used:
– BVHs should partition space
– When children mostly overlap each other and 

parent, split is wasted.

Good Split Bad Split



Hierarchy building:

– First tiles surface of triangles with many small 
spheres, so that many leaf nodes may have a 
pointer to the same triangle.

– Builds a hierarchy top down that bounds these 
spheres, instead of triangles.

Sphere Trees [Quinlan94]



Sphere Trees [Quinlan94]



Distance Computation:

– Same method as previously outlined, except 
that many leaf node pairs may correspond to 
same triangle.  

– Triangle pair distances are hashed to avoid 
redundant computations.

Sphere Trees [Quinlan94]



Sphere Trees[Hubbard96]

At lowest level, approximates model with 
spheres:
– Distributes points evenly over surface of model
– Builds 3D Voronoi diagram, capturing skeletal 

shape.
– Each leaf sphere bounds four Voronoi vertices

Hierarchy built by merging pairs of spheres 
– Merges prioritized by tightness of resulting sphere
– Does merges to make 8 children for root, recurs 

on each of the 8 children



Sphere Trees [Hubbard96]



Sphere Trees [Hubbard96]

Time-critical collision detection
– Do subdivision until available time runs out.
– Base collision-response on overlapping 

spheres at whatever level reached.

Exact collision detection
– Keep pointer to covered polygon in each leaf 

sphere; compare polygons when two leaf 
spheres overlap - similar to Quinlan’s 
approach



OBB Trees [GLM96]
(RAPID)

Hierarchy built downward - “split and fit”
– Root box fits all triangles
– Triangles are split into two subsets
– Boxes recursively fit to subsets

Fitting method:
– Box orientation obtained from eigenvectors of 

the covariance matrix of the vertices.
– Axes can align with a row of vertices, reducing 

tightness of fit.
– Sampled convex hull of vertices works better



OBB Trees [GLM96]
(RAPID)

OBB overlap test based on separating axis 
theorem:
– Two convex polyhedra are disjoint iff their 

projections on one of the following axes are 
disjoint:

• the face normals of the polyhedra
• all cross products of two edge directions, 

one from each polyhedron.
– With OBB’s there are only 15 such axes.
– Box orthogonality yields optimizations: most 

dot products needed are encoded in relative 
orientation between the boxes.



OBB Trees [GLM96]
(RAPID)

Check whether axis L separates boxes:

s
ha

L

hb



OBB Trees [GLM96]
(RAPID)

Which factor dominates - fit or cost of 
tests?
– Gottschalk formalized this somewhat: showed 

OBBs converge to finely tesselated geometry 
asymptotically faster than spheres or AABBs.

– For two close parallel surfaces, OBBs can be a 
big win.

– In many experiments, OBBs have justified 
higher test cost



AABB Trees
[SOLID97]

Builds AABB tree to model, but reorients 
AABBs with model.
– OBB tests needed, but only one relative 

orientation between pair of OBBs when 
comparing two hierarchies.

– Reduces OBB test cost, but loses convergence.

– Efficient extension for deformable models.



Swept Sphere Trees [LGLM98]
(PQP)

OBBs have good convergence properties, but 
what about distance computation?

Premise:
– Spheres are cheap - you get a lot of mileage                       

out of a point and a uniform offset

– Could replace point with something more             
complicated, like a line or rectangle.                          
Equivalent to sweeping sphere along that shape.

– Distance between swept spheres is distance          
between the core shapes minus the sphere radii.



Swept Sphere Trees [LGLM98]
(PQP)

Why points, lines, and rectangles?
– Line-swept spheres fit elongated shapes
– Rectangle-swept spheres fit flat shapes / orthogonal
– Give a variation of fit quality, storage needs, and 

distance test cost.
– Once rectangle-pair distance test available, all other 

pairwise distance tests are easy - good candidate for 
hybrid hierarchies



Swept Sphere Trees [LGLM98]
(PQP)

Rectangle Distance Test:
– If closest points are on edges

• Lin-Canny style approach to find edge-pair with closest 
points

• Simple Voronoi regions (half-spaces) make this efficient

– Otherwise:
• Takes projections of rectangles on face normals
• Max separation of these projections is distance



Swept Sphere Trees [LGLM98]
(PQP)

Performance:
– To date, using all types not faster than using rectangles only.

– In several experiments, faster than Quinlan’s distance 
library, after standardizing triangle-pair test; using small 
spheres w/ Quinlan’s library makes performance similar, but 
requires large amounts of memory.

– Besides BVs, coherence trick aided our system:
• Cache the closest triangle pair, and use to initialize the 

distance estimate in next query: yields small factor of 
speedup

– Slower than RAPID for checking overlap



Swept Sphere Trees [LGLM98]
(PQP)

Future possibilities with PQP:
– Incorporate points and lines for higher 

performance and/or lower memory usage.
– Use BVs to approximate object shape [Hubbard96]
– Providing multiple contact points for constraint 

forces [Baraff89]



Conclusions

Many different methods in existence for 
engineering a collision system.  

Unfortunately, numerous sacrifices and 
trade-offs:
– object complexity v. algorithm speed / available 

algorithms
– realistic simulation v. real-time performance



Conclusions

Big strides could still be made with 
nonconvex models:
– BVHs not quite satisfying: Convex model 

algorithms nicely exploit coherence, estimate 
penetration depth

– On the other hand, BVHs work with very 
general input.

– Playstation2-optimized version of PQP in the 
works...



The End.
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